Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation
نویسندگان
چکیده
Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA). Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2), has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate) in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without considering NADH oxidation.
منابع مشابه
Correction: Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation
[This corrects the article DOI: 10.1371/journal.pone.0161362.].
متن کاملThe Effects of Use Medicinal Plants on Rumen Fermentation Parameters in Ruminants
Rumen is a persistent and specific ecosystem consists of bacteria, protozoa and fungus where feed fermentation takes place in it. Produced Hydrogen in rumen can be used in the synthesis of the volatile fatty acids and the microbial protein and its excess would be eliminated through the production of Methane by methanogenesis. Nutritionists have tried to find ways to decrease loss and energy and...
متن کاملThe Effects of Use Medicinal Plants on Rumen Fermentation Parameters in Ruminants
Rumen is a persistent and specific ecosystem consists of bacteria, protozoa and fungus where feed fermentation takes place in it. Produced Hydrogen in rumen can be used in the synthesis of the volatile fatty acids and the microbial protein and its excess would be eliminated through the production of Methane by methanogenesis. Nutritionists have tried to find ways to decrease loss and energy and...
متن کاملDrawing CCCT Diagrams and Investigation of Deformation Effects on Martensite and Bainite Trabsformations in NiCrMoV Steel
In this study, two CCCT diagrams are drawn to be compared with a CCT diagram. The CCCT diagrams represent continuous cooling transformations in stress assisted state. The increased Md and Bd temperatures of CCCT diagrams were also compared with those of the CCT diagrams and the cause was investigated from both thermodynamic and metallurgical viewpoints. Thermodynamic examinations revealed that ...
متن کاملThe Effect of Native Grass Substitution Using Jengkol (Archidendron jiringa) Peel and Leaves Powder on in vitro Rumen Fermentation
The effect of substituting native grass with jengkol (Archidendron jiringa) by-product on fermentation characteristics, rumen microbial profile, methane production, and hydrogen balance using in vitro method was investigated. Seven treatments (different composition of native grass, jengkol peel, jengkol leaves, and concentrate) with five replications in a block randomized desi...
متن کامل